Newtonian heating and magnetohydrodynamic effects in flow of a Jeffery fluid over a radially stretching surface
نویسندگان
چکیده
The combined effects of Newtonian heating and magnetohydrodynamics (MHD) in a flow of a Jeffery fluid are analyzed in stagnation point flow over a radially stretching surface. The governing equations are modeled by invoking boundary layer analysis. The computed solution by a homotopy approach is valid in the spatial domain. Graphical results for the velocity and temperature fields are displayed and discussed. The local Nusselt number for various values of embedding parameters is shown. It is noted that the magnetic field retards the flow, whereas Newtonian heating acts as a boosting agent in order to increase the temperature of the fluid.
منابع مشابه
Entropy generation in hydromagnetic and thermal boundary layer flow due to radial stretching sheet with Newtonian heating
The entropy generation during hydromagnetic boundary layer flow of a viscous incompressible electrically conducting fluid due to radial stretching sheet with Newtonian heating in the presence of a transverse magnetic field and the thermal radiation has been analyzed. The governing equations are then solved numerically by using the fourth order Runge-Kutta method with shooting technique. The eff...
متن کاملUnsteady Hydromagnetic Flow of Eyring-Powell Nanofluid over an Inclined Permeable Stretching Sheet with Joule Heating and Thermal Radiation
The present analysis deals with an unsteady magnetohydrodynamic flow of Eyring-Powell nanofluid over an inclined permeable stretching sheet. Effects of thermal radiation, Joule heating, and chemical reaction are considered. The effects of Brownian motion and thermophoresis on the flow over the permeable stretching sheet are discussed. Using Runge-Kutta fourth-order along with shooting technique...
متن کاملMHD boundary layer flow and heat transfer of Newtonian nanofluids over a stretching sheet with variable velocity and temperature distribution
Laminar boundary layer flow and heat transfer of Newtonian nanofluid over a stretching sheet with the sheet velocity distribution of the form (Uw=CXβ) and the wall temperature distribution of the form (Tw= T∞+ axr) for the steady magnetohydrodynamic(MHD) is studied numerically. The governing momentum and energy equations are transformed to the local non-similarity equations using the appropriat...
متن کاملMHD Boundary Layer Flow and Heat Transfer of Newtonian Nanofluids over a Stretching Sheet with Variable Velocity and Temperature Distribution
Laminar boundary layer flow and heat transfer of Newtonian nanofluid over a stretching sheet with the sheet velocity distribution of the form (UW=cXβ) and the wall temperature distribution of the form (TW=T∞+aXr ) for the steady magnetohydrodynamic (MHD) is studied numerically. The governing momentum and energy equations are transformed to the local non-similarity equations using the appropriat...
متن کاملEffects of Non-uniform Suction, Heat Generation/Absorption and Chemical Reaction with Activation Energy on MHD Falkner-Skan Flow of Tangent Hyperbolic Nanofluid over a Stretching/Shrinking Eedge
In the present investigation, the magnetohydrodynamic Falkner-Skan flow of tangent hyperbolic nanofluids over a stretching/shrinking wedge with variable suction, internal heat generation/absorption and chemical reaction with activation energy have been scrutinized. Nanofluid model is composed of “Brownian motion’’ and “Thermophoresis’’. Transformed non-dimensional coupled non-linear equations a...
متن کامل